EQUAÇÃO DE ONDA REATIVISTA QUÃNTICA QUÍMICA EM MECÃNICA GENRALIZADA GRACELI :
G ψ = E ψ = IGFF E [tG+]ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] [ q G*]ψ μ / h/c ψ(x, t) [x t ]..
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por W
olfgang Pauli no ano de 1927.
Detalhes
A equação de Pauli é mostrada como:
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
A equação de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
As equações de Madelung ou as equações da hidrodinâmica quântica são uma formulação alternativa de Erwin Madelung equivalente à equação de Schrödinger, escrita em termos de variáveis hidrodinâmicas, similar às equações de Navier-Stokes da dinâmica dos fluidos. A derivação das equações de Madelung[1] é semelhante à formulação de de Broglie-Bohm, que representa a equação de Schrödinger como uma equação quântica de Hamilton-Jacobi .
Equações
As equações de Madelung [2] são equações de Euler quânticas:[3]
onde é a velocidade do fluxo é a densidade de massa, é o potencial quântico de Bohm e é o potencial da equação de Schrödinger. A circulação do campo de velocidade de fluxo ao longo de qualquer trajetória fechada obedece à condição auxiliar .[4]
As equações de Madelung são derivadas escrevendo-se a função de onda na forma polar
e substituindo esta forma na equação de Schrödinger
O fluxo de velocidade é definido por
a partir do qual também descobrimos que , onde é a corrente de probabilidade da mecânica quântica padrão.
A força quântica, que é o negativo do gradiente do potencial quântico, também pode ser escrita em termos do tensor quântico de pressão.
onde
A integral de energia armazenada no tensor de pressão quântica é proporcional à informação de Fisher, que é responsável pela qualidade das medições. Assim, de acordo com o limite de Cramér-Rao, o princípio da incerteza de Heisenberg é equivalente a uma desigualdade padrão para a eficiência (estatística) das medições. A definição termodinâmica do potencial químico quântico segue do equilíbrio da força hidrostática acima . De acordo com a termodinâmica, em equilíbrio, o potencial químico é constante em todos os lugares, o que corresponde diretamente à equação estacionária de Schrödinger. Portanto, os autovalores da equação de Schrödinger são energias livres, que diferem das energias internas do sistema. A energia interna das partículas é calculada via e está relacionado com a correção local de Carl Friedrich von Weizsäcker .[5] No caso de um oscilador harmônico quântico, por exemplo, pode-se facilmente mostrar que a energia do ponto zero é o valor do potencial químico do oscilador, enquanto a energia interna do oscilador é zero no estado fundamental,. Assim, a energia do ponto zero representa a energia para colocar um oscilador estático no vácuo, o que mostra novamente que as flutuações do vácuo são a razão da mecânica quântica.
O espaço de Fock, em mecânica quântica, é um sistema algebraico (um espaço de Hilbert) que se usa para descrever um estado quântico com um número variável ou desconhecido de partículas. Recebe o seu nome de Vladimir Fock.
Tecnicamente, o espaço de Fock é o espaço de Hilbert preparado como soma direta dos produtos tensoriais dos espaços de Hilbert para uma partícula:
onde Sν é o operador que simetriza (ou anti-simetriza) o espaço, de forma que o espaço de Fock descreva adequadamente um conjunto de bosões ν=+ (ou fermiões ν=-). H é o espaço de Hilbert para uma só partícula. Esta forma de combinação de H, que resulta num espaço de Hilbert maior (o espaço de Fock), contém estados para um número arbitrário de partículas. Os estados de Fock são a base natural para este espaço.
Comentários
Postar um comentário